讲座题目:Stability analysis for the elliptic function solution of modified KdV equation 主讲人😌:凌黎明 教授 主持人:陈勇 教授 开始时间😆:2021-05-19 15:00:00 结束时间:2021-05-19 16:00:00 讲座地址:腾讯会议 ID:952 475 276 主办单位:数学科学学院
报告人简介◼️: 凌黎明,华南理工大学教授🧑🏻🎤。长期从事非线性可积系统的研究,在可积系统“怪波”理论的发展中作出了一系列工作🧑🏼🏫,率先同合作者给出高阶怪波解的Darboux 变换方法以及无穷阶怪波的分析理论。报告人在该方向上已经发表 40余篇 SCI 论文🐯🤜🏻,其中 Duke Mathematical Journal,Physical Review E🤵🏽♀️👩🏼🍼,Physica D, Studies in Applied Mathematics, Nonlinearity 等杂志🕵🏻,合作出版怪波专著一部🤦🏿♂️。已发表文章在 Google 学术搜索统计引用 1800 余次,H 指数 16,其中单篇最高引用 500 次,4篇入选ESI高被引论文🫱。曾主持国家自然科学基金项目2项。
报告内容: In this talk, we use Jacobi theta function theory to express the elliptic function solutions of mKdV equation and the corresponding solutions of Lax pair. Based on the theta function representation, we analyze the spectral and orbital stability of the elliptic function solutions by the Lyapunov functionals and high order conservation laws method. We find a given sufficiency condition that the elliptic function solutions are spectral or orbital stable with respect to subharmonic perturbations. Finally, we use Darboux-B\acklund transformation to obtain the exact solutions to exhibit the unstable dynamic process. This work is joint with Xuan Sun (my phD student). |